Search results for "Alginic acid"

showing 4 items of 4 documents

Sequestration of organometallic compounds by natural organic matter. binding of trimethyltin(IV) by fulvic and alginic acids

2006

The binding capacity of fulvic and alginic acids towards trimethyl tin(IV) cation was quantitatively determined in order to evaluate the sequestering ability of toxic organometallic compounds by natural organic matter. Investigations were performed in the pH range of natural waters (5–8.5) where the carboxylate groups, largely present in both sequestering agents, are the main binding sites. A chemical interaction model, according to which both the protonation of polyelectrolyte ligands and the hydrolysis of the organotin cation in NaCl aqueous solution were considered, was used to define the speciation of the systems under investigation. Measurements performed at different ionic strength va…

Aqueous solutionChemistrycomplexationInorganic chemistrysequestrationProtonationGeneral ChemistryPolyelectrolyteInorganic ChemistryHydrolysischemistry.chemical_compoundspeciationIonic strengthStability constants of complexesSettore CHIM/01 - Chimica AnaliticaCarboxylatenatural organic matterorganometallic compoundhuman activitiesAlginic acidApplied Organometallic Chemistry
researchProduct

Modelling of proton and metal exchange in the alginate biopolymer.

2005

Acid-base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1or=I/mol l(-1)or=1.0) and in different supporting electrolytes (Et4NI, NaCl, KCl, LiCl, NaCl+MgCl2), with the aim of examining the influence of ionic medium on the proton-binding capacity and of quantifying the strength of interaction with light metal ions in the perspective of speciation studies in natural aqueous systems. Potentiometric ([H+]-glass electrode) and titration calorimetric data were expressed as a function of the dissociation degree (alpha) using different models (Henderson-Hasselbalch modified, Högfeldt three parameter…

Alginic acid; Proton- and metal-binding capacity; Thermodynamic parameters; Ionic strength dependence; Models for medium dependence and ion associationProton bindingAlginatesIonic strength dependenceInorganic chemistryPotentiometric titrationIonic bondingProtonationElectrolytePhaeophytaBiochemistryAnalytical ChemistryBiopolymersGlucuronic Acidalginic acid proton and metal-binding capacity Thermodynamics parameters Ionic strength dependence models for medium dependence and ion associationAlginic acidMagnesium ionAqueous solutionMolecular StructureChemistryHexuronic AcidsProton- and metal-binding capacityThermodynamic parametersIonic strengthMetalsProtonsModels for medium dependence and ion associationAnalytical and bioanalytical chemistry
researchProduct

Sequestration of organomettalic compounds by synthetic and naturally occuring polycarboxylate ligands. Binding of monomethylmercury(II) by polyacryli…

2007

The sequestering capacity of synthetic and naturally occurring polycarboxylate ligands towards mono- methylmercury(II) was evaluated by stability quantitative data on the interaction of CH3Hgþ with different molecular weight synthetic polyacrylates (2 and 20 kDa average M.wt) and alginate (70– 100 kDa) extracted from brown algae Macrocystis pyrifera. The influence of ionic medium was evaluated by measurements on the CH3Hgþ-polyacrylate systems in NaNO3 medium at different ionic strengths (0.10, 0.25, 0.50 and 0.75mol Lÿ1), and a Debye–Hu¨ ckel type equation was used for the dependence of complex formation constants on ionic strength. Measurements on the CH3Hgþ - alginate system were carried…

Chemical Health and SafetybiologyChemistryHealth Toxicology and MutagenesisComplex formationIonic bondingmonomethylmercury; sequestration by organic matter; polyacrylic and alginic acidsToxicologybiology.organism_classificationBrown algaemonomethylmercuryBinding abilityType equationpolyacrylic and alginic acidsmonomethylmercury sequestration by organic matter polyacrylic and alginic acids speciation equilibrium analysis complex species formationIonic strengthOrganic chemistrySettore CHIM/01 - Chimica Analiticasequestration by organic matterNuclear chemistryGroup 2 organometallic chemistry
researchProduct

Sequestration of biogenic amines by alginic and fulvic acids.

2006

The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4diaminobutane (or spermidine), diethylenetriamine; tetramine: N.N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-1). For all the systems, the formation of…

polyammonium-polycarboxylate interactionsAlginatesPolymersBiogenic aminesInorganic chemistryFulvic acidCarboxylic AcidsBiophysicsProtonationCalorimetryBiochemistryMedicinal chemistryElectrolyteschemistry.chemical_compoundbiogenic amineGlucuronic AcidPolyaminesBenzopyransAlginic acidPolyacrylic acidCadaverineChemistryHexuronic AcidsOrganic ChemistryPolyacrylic acidPentaminesequestrationPolyelectrolytesPolyelectrolyteQuaternary Ammonium CompoundsBiogenic amines; Fulvic acid; Alginic acid; Polyacrylic acid; sequestrationModels ChemicalDiethylenetriamineThermodynamicsAmine gas treatingProtonsMathematics
researchProduct